Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Self-contact elimination by membrane fusion

Abstract

Mutual, homophilic cell-cell adhesion between epithelial cells is required for proper maintenance of epithelial barrier function. Whereas opposing membranes from neighboring cells rapidly assemble junctional complexes, self-contacting membranes curiously do not, suggesting that cells have the ability to prevent the maturation of self-junctions. Using a self-contact-inducing microfabricated substrate, we show that self-contacts of normal epithelial cells are rapidly eliminated by membrane fusion between two opposing plasma membranes of a single cell. This membrane fusion is most frequently observed in E-cadherin-expressing epithelial cells, but not in fibroblasts. The efficiency of self-contact elimination depends on extracellular calcium concentration and the level of E-cadherin, suggesting that E-cadherin, although not required, enhances membrane fusion efficiency by bringing opposing membranes into close apposition to one another. Additionally, Rho-associated protein kinase inhibition decreases self-contact-induced membrane fusion of epithelial cells, suggesting that this fusion may be mechanically regulated through the actin-myosin network. This self-contact-induced membrane fusion is a key elimination mechanism for unwanted self-junctions and may be a feature of cell self-recognition.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View