Skip to main content
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Rotation-minimizing Euler-Rodrigues rigid-body motion interpolants


A characterization for spatial Pythagorean-hodograph (PH) curves of degree 7 with rotation-minimizing Euler-Rodrigues frames (ERFs) is determined, in terms of one real and two complex constraints on the curve coefficients. These curves can interpolate initial/final positions pi and pf and orientational frames (ti,ui,vi) and ( tf,uf,vf) so as to define a rational rotation-minimizing rigid body motion. Two residual free parameters, that determine the magnitudes of the end derivatives, are available for optimizing shape properties of the interpolant. This improves upon existing algorithms for quintic PH curves with rational rotation-minimizing frames (RRMF quintics), which offer no residual freedoms. Moreover, the degree 7 PH curves with rotation-minimizing ERFs are capable of interpolating motion data for which the RRMF quintics do not admit real solutions. Although these interpolants are of higher degree than the RRMF quintics, their rotation-minimizing frames are actually of lower degree (6 versus 8), since they coincide with the ERF. This novel construction of rational rotation-minimizing motions may prove useful in applications such as computer animation, geometric sweep operations, and robot trajectory planning. © 2013 Elsevier B.V.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View