Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Dimethyl Fumarate Alleviates Dextran Sulfate Sodium-Induced Colitis, through the Activation of Nrf2-Mediated Antioxidant and Anti-inflammatory Pathways.

Abstract

Oxidative stress and chronic inflammation play critical roles in the pathogenesis of ulcerative colitis (UC) and inflammatory bowel diseases (IBD). A previous study has demonstrated that dimethyl fumarate (DMF) protects mice from dextran sulfate sodium (DSS)-induced colitis via its potential antioxidant capacity, and by inhibiting the activation of the NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome. This study aims to clarify the nuclear factor erythroid 2-related factor 2/antioxidant responsive element (Nrf2/ARE) pathway pharmacological activation and anti-inflammatory effect by DMF, through focusing on other crucial antioxidant enzymes and inflammatory mediator, including glutamate-cysteine ligase catalytic subunit (GCLC), glutathione peroxidase (GPX) and cyclooxygenase-2 (COX-2), in a DSS-induced colitis mouse model. The oral administration of DMF attenuated the shortening of colons and alleviated colonic inflammation. Furthermore, the expression of key antioxidant enzymes, including GCLC and GPX, in the colonic tissue were significantly increased by DMF administration. In addition, protein expression of the inflammatory mediator, COX-2, was reduced by DMF administration. Our results suggest that DMF alleviates DSS-induced colonic inflammatory damage, likely via up-regulating GCLC and GPX and down-regulating COX-2 protein expression in colonic tissue.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View