Null structures and degenerate dispersion relations in two space dimensions
Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Null structures and degenerate dispersion relations in two space dimensions

  • Author(s): Fu, Yuqiu
  • Tataru, Daniel
  • et al.
Abstract

Motivated by water-wave problems, in this paper we consider a class of nonlinear dispersive PDEs in 2D with cubic nonlinearities, whose dispersion relations are radial and have vanishing Guassian curvature on a circle. For such a model we identify certain null structures for the cubic nonlinearity, which suffice in order to guarantee global scattering solutions for the small data problem. Our null structures in the power-type nonlinearity are weak, and only eliminate the worst nonlinear interaction. Such null structures arise naturally in some water-wave problems.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View