- Main
Adjoining a universal inner inverse to a ring element
Published Web Location
https://doi.org/10.1016/j.jalgebra.2015.11.008Abstract
Let R be an associative unital algebra over a field k, let p be an element of R, and let R'=R〈q|pqp=p〉. We obtain normal forms for elements of R', and for elements of R'-modules arising by extension of scalars from R-modules. The details depend on where in the chain pR∩Rp⊆pR∪Rp⊆pR+Rp⊆R the unit 1 of R first appears.This investigation is motivated by a hoped-for application to the study of the possible forms of the monoid of isomorphism classes of finitely generated projective modules over a von Neumann regular ring; but that goal remains distant.We end with a normal form result for the algebra obtained by tying together a k-algebra R given with a nonzero element p satisfying 1 ∉ pR+ Rp and a k-algebra S given with a nonzero q satisfying 1 ∉ qS+ Sq, via the pair of relations p= pqp, q= qpq.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-