- Main
Similarity of Precursors in Solid-State Synthesis as Text-Mined from Scientific Literature
Published Web Location
https://doi.org/10.1021/acs.chemmater.0c02553Abstract
Collecting and analyzing the vast amount of information available in the solid-state chemistry literature may accelerate our understanding of materials synthesis. However, one major problem is the difficulty of identifying which materials from a synthesis paragraph are precursors or are target materials. In this study, we developed a two-step chemical named entity recognition model to identify precursors and targets, based on information from the context around material entities. Using the extracted data, we conducted a meta-analysis to study the similarities and differences between precursors in the context of solid-state synthesis. To quantify precursor similarity, we built a substitution model to calculate the viability of substituting one precursor with another while retaining the target. From a hierarchical clustering of the precursors, we demonstrate that the "chemical similarity"of precursors can be extracted from text data. Quantifying the similarity of precursors helps provide a foundation for suggesting candidate reactants in a predictive synthesis model.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-