- Main
Investigation of background electron emission in the LUX detector
- Akerib, DS;
- Alsum, S;
- Araújo, HM;
- Bai, X;
- Balajthy, J;
- Baxter, A;
- Bernard, EP;
- Bernstein, A;
- Biesiadzinski, TP;
- Boulton, EM;
- Boxer, B;
- Brás, P;
- Burdin, S;
- Byram, D;
- Carmona-Benitez, MC;
- Chan, C;
- Cutter, JE;
- de Viveiros, L;
- Druszkiewicz, E;
- Fan, A;
- Fiorucci, S;
- Gaitskell, RJ;
- Ghag, C;
- Gilchriese, MGD;
- Gwilliam, C;
- Hall, CR;
- Haselschwardt, SJ;
- Hertel, SA;
- Hogan, DP;
- Horn, M;
- Huang, DQ;
- Ignarra, CM;
- Jacobsen, RG;
- Jahangir, O;
- Ji, W;
- Kamdin, K;
- Kazkaz, K;
- Khaitan, D;
- Korolkova, EV;
- Kravitz, S;
- Kudryavtsev, VA;
- Leason, E;
- Lenardo, BG;
- Lesko, KT;
- Liao, J;
- Lin, J;
- Lindote, A;
- Lopes, MI;
- Manalaysay, A;
- Mannino, RL;
- Marangou, N;
- McKinsey, DN;
- Mei, D-M;
- Moongweluwan, M;
- Morad, JA;
- St. J. Murphy, A;
- Naylor, A;
- Nehrkorn, C;
- Nelson, HN;
- Neves, F;
- Nilima, A;
- Oliver-Mallory, KC;
- Palladino, KJ;
- Pease, EK;
- Riffard, Q;
- Rischbieter, GRC;
- Rhyne, C;
- Rossiter, P;
- Shaw, S;
- Shutt, TA;
- Silva, C;
- Solmaz, M;
- Solovov, VN;
- Sorensen, P;
- Sumner, TJ;
- Szydagis, M;
- Taylor, DJ;
- Taylor, R;
- Taylor, WC;
- Tennyson, BP;
- Terman, PA;
- Tiedt, DR;
- To, WH;
- Tvrznikova, L;
- Utku, U;
- Uvarov, S;
- Vacheret, A;
- Velan, V;
- Webb, RC;
- White, JT;
- Whitis, TJ;
- Witherell, MS;
- Wolfs, FLH;
- Woodward, D;
- Xu, J;
- Zhang, C
- et al.
Published Web Location
https://doi.org/10.1103/physrevd.102.092004Abstract
Dual-phase xenon detectors, as currently used in direct detection dark matter experiments, have observed elevated rates of background electron events in the low energy region. While this background negatively impacts detector performance in various ways, its origins have only been partially studied. In this paper we report a systematic investigation of the electron pathologies observed in the LUX dark matter experiment. We characterize different electron populations based on their emission intensities and their correlations with preceding energy depositions in the detector. By studying the background under different experimental conditions, we identified the leading emission mechanisms, including photoionization and the photoelectric effect induced by the xenon luminescence, delayed emission of electrons trapped under the liquid surface, capture and release of drifting electrons by impurities, and grid electron emission. We discuss how these backgrounds can be mitigated in LUX and future xenon-based dark matter experiments.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-