Gaussian Fluctuations of Eigenvalues in Wigner Random Matrices
Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Gaussian Fluctuations of Eigenvalues in Wigner Random Matrices

Abstract

We study the fluctuations of eigenvalues from a class of Wigner random matrices that generalize the Gaussian orthogonal ensemble. We begin by considering an n×n matrix from the Gaussian orthogonal ensemble (GOE) or Gaussian symplectic ensemble (GSE) and let x k denote eigenvalue number k. Under the condition that both k and n−k tend to infinity as n→∞, we show that x k is normally distributed in the limit. We also consider the joint limit distribution of eigenvalues $(x_{k_{1}},\ldots,x_{k_{m}})$ from the GOE or GSE where k 1, n−k m and k i+1−k i , 1≤i≤m−1, tend to infinity with n. The result in each case is an m-dimensional normal distribution. Using a recent universality result by Tao and Vu, we extend our results to a class of Wigner real symmetric matrices with non-Gaussian entries that have an exponentially decaying distribution and whose first four moments match the Gaussian moments.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View