Square integrable holomorphic functions on infinite-dimensional Heisenberg type groups
Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Square integrable holomorphic functions on infinite-dimensional Heisenberg type groups

Abstract

We introduce a class of non-commutative, complex, infinite-dimensional Heisenberg like Lie groups based on an abstract Wiener space. The holomorphic functions which are also square integrable with respect to a heat kernel measure μ on these groups are studied. In particular, we establish a unitary equivalence between the square integrable holomorphic functions and a certain completion of the universal enveloping algebra of the “Lie algebra” of this class of groups. Using quasi-invariance of the heat kernel measure, we also construct a skeleton map which characterizes globally defined functions from the L 2(ν)-closure of holomorphic polynomials by their values on the Cameron–Martin subgroup.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View