- Main
Machine learning to predict ceftriaxone resistance using single nucleotide polymorphisms within a global database of Neisseria gonorrhoeae genomes.
Published Web Location
https://doi.org/10.1128/spectrum.01703-23Abstract
Antimicrobial resistance in Neisseria gonorrhoeae is an urgent global health issue. The objectives of the study were to use a global collection of 12,936 N. gonorrhoeae genomes from the PathogenWatch database to evaluate different machine learning models to predict ceftriaxone susceptibility/decreased susceptibility using 97 mutations known to be associated with ceftriaxone resistance. We found the random forest classifier model had the highest performance. The analysis also reported the relative contributions of different mutations within the ML model predictions, allowing for the identification of the mutations with the highest importance for ceftriaxone resistance. A machine learning model retrained with the top five mutations performed similarly to the model using all 97 mutations. These results could aid in the development of molecular tests to detect resistance to ceftriaxone in N. gonorrhoeae. Moreover, this approach could be applied to building and evaluating machine learning models for predicting antimicrobial resistance in other pathogens.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-