Skip to main content
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Intestinal regulation of urinary sodium excretion and the pathophysiology of diabetic kidney disease: a focus on glucagon-like peptide 1 and dipeptidyl peptidase 4.


The tubular hypothesis of glomerular filtration and nephropathy in diabetes is a pathophysiological concept that assigns a critical role to the tubular system, including proximal tubular hyper-reabsorption and growth, which is relevant for early glomerular hyperfiltration and later chronic kidney disease. Here we focus on how harnessing the bioactivity of hormones released from the gut may ameliorate the early effects of diabetes on the kidney in part by attenuating proximal tubular hyper-reabsorption and growth. The endogenous tone of the glucagon-like peptide 1 (GLP-1)/GLP-1 receptor (GLP-1R) system and its pharmacological activation are nephroprotective in diabetes independent of changes in blood glucose. This is associated with suppression of increases in kidney weight and glomerular hyperfiltration, which may reflect, at least in part, its inhibitory effects on tubular hyper-reabsorption and growth. Inhibition of dipeptidyl peptidase 4 (DPP-4) is also nephroprotective independent of changes in blood glucose and involves GLP-1/GLP-1R-dependent and -independent mechanisms. The GLP-1R agonist exendin-4 induces natriuresis via activation of the GLP-1R. In contrast, DPP4 inhibition increases circulating GLP-1, but drives a GLP-1R-independent natriuretic response, implying a role for other DPP-4 substrates. The extent to which the intrarenal DPP-4/GLP-1 receptor system contributes to all these changes remains to be established, as does the direct impact of the system on renal inflammation.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View