Skip to main content
eScholarship
Open Access Publications from the University of California

Nonadiabatic dynamics of cobalt tricarbonyl nitrosyl for ligand dissociation induced by electronic excitation

Abstract

We utilize real-time time-dependent density functional theory and Ehrenfest dynamics scheme to investigate excited-state nonadiabatic dynamics of ligand dissociation of cobalt tricarbonyl nitrosyl, Co(CO)3NO, which is a precursor used for cobalt growth in advanced technologies, where the precursor's reaction is enhanced by electronic excitation. Based on the first-principles calculations, we demonstrate two dissociation pathways of the NO ligand on the precursor. Detailed electronic structures are further analyzed to provide an insight into dynamics following the electronic excitations. This study sheds light on computational demonstration and underlying mechanism of the electronic-excitation-induced dissociation, especially in molecules with complex chemical bonds such as the Co(CO)3NO.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View