Skip to main content
Open Access Publications from the University of California
Notice: eScholarship will undergo scheduled maintenance from Tuesday, January 21 to Wednesday, January 22. Some functionality may not be available during this time. Learn more at eScholarship Support.
Download PDF
- Main
A Risk Prediction Model for Long-term Prescription Opioid Use.
Published Web Location
https://doi.org/10.1097/mlr.0000000000001651Abstract
Background
Tools are needed to aid clinicians in estimating their patients' risk of transitioning to long-term opioid use and to inform prescribing decisions.Objective
The objective of this study was to develop and validate a model that predicts previously opioid-naive patients' risk of transitioning to long-term use.Research design
This was a statewide population-based prognostic study.Subjects
Opioid-naive (no prescriptions in previous 2 y) patients aged 12 years old and above who received a pill-form opioid analgesic in 2016-2018 and whose prescriptions were registered in the California Prescription Drug Monitoring Program (PDMP).Measures
A multiple logistic regression approach was used to construct a prediction model with long-term (ie, >90 d) opioid use as the outcome. Models were developed using 2016-2017 data and validated using 2018 data. Discrimination (c-statistic), calibration (calibration slope, intercept, and visual inspection of calibration plots), and clinical utility (decision curve analysis) were evaluated to assess performance.Results
Development and validation cohorts included 7,175,885 and 2,788,837 opioid-naive patients with outcome rates of 5.0% and 4.7%, respectively. The model showed high discrimination (c-statistic: 0.904 for development, 0.913 for validation), was well-calibrated after intercept adjustment (intercept, -0.006; 95% confidence interval, -0.016 to 0.004; slope, 1.049; 95% confidence interval, 1.045-1.053), and had a net benefit over a wide range of probability thresholds.Conclusions
A model for the transition from opioid-naive status to long-term use had high discrimination and was well-calibrated. Given its high predictive performance, this model shows promise for future integration into PDMPs to aid clinicians in formulating opioid prescribing decisions at the point of care.Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
For improved accessibility of PDF content, download the file to your device.
Enter the password to open this PDF file:
File name:
-
File size:
-
Title:
-
Author:
-
Subject:
-
Keywords:
-
Creation Date:
-
Modification Date:
-
Creator:
-
PDF Producer:
-
PDF Version:
-
Page Count:
-
Page Size:
-
Fast Web View:
-
Preparing document for printing…
0%