- Main
On the effect of rotation on the life-span of analytic solutions to the $3D$ inviscid primitive equations
Abstract
We study the effect of the rotation on the life-span of solutions to the $3D$ hydrostatic Euler equations with rotation and the inviscid Primitive equations (PEs) on the torus. The space of analytic functions appears to be the natural space to study the initial value problem for the inviscid PEs with general initial data, as they have been recently shown to exhibit Kelvin-Helmholtz type instability. First, for a short interval of time that is independent of the rate of rotation $|\Omega|$, we establish the local well-posedness of the inviscid PEs in the space of analytic functions. In addition, thanks to a fine analysis of the barotropic and baroclinic modes decomposition, we establish two results about the long time existence of solutions. (i) Independently of $|\Omega|$, we show that the life-span of the solution tends to infinity as the analytic norm of the initial baroclinic mode goes to zero. Moreover, we show in this case that the solution of the $3D$ inviscid PEs converges to the solution of the limit system, which is governed by the $2D$ Euler equations. (ii) We show that the life-span of the solution can be prolonged unboundedly with $|\Omega|\rightarrow \infty$, which is the main result of this paper. This is established for "well-prepared" initial data, namely, when only the Sobolev norm (but not the analytic norm) of the baroclinic mode is small enough, depending on $|\Omega|$. Furthermore, for large $|\Omega|$ and "well-prepared" initial data, we show that the solution to the $3D$ inviscid PEs is approximated by the solution to a simple limit resonant system with the same initial data.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-