Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Feasibility of PET-enabled dual-energy CT imaging: First physical phantom and initial patient study results

Abstract

Purpose

Dual-energy (DE) CT enables material decomposition by using two different x-ray energies and may be combined with PET for improved multimodality imaging. However, this increases radiation dose and may require a hardware upgrade due to the added second x-ray CT scan. The recently proposed PET-enabled DECT method allows dual-energy imaging using a conventional PET/CT scanner without the need to change scanner hardware or increase radiation exposure. Here we demonstrate the first-time physical phantom and patient data evaluation of this method.

Methods

The PET-enabled DECT method reconstructs a gamma-ray CT (gCT) image at 511 keV from the time-of-flight PET data with the maximum-likelihood attenuation and activity (MLAA) approach and then combines this image with the low-energy x-ray CT images to form a dual-energy image pair for material decomposition. To improve the image quality of gCT, a kernel MLAA method was developed using the x-ray CT as a priori information. Here we developed a general open-source implementation for gCT reconstruction and used this implementation for the first real data validation using both physical phantom study and human-subject study. Results from PET-enabled DECT were compared using x-ray DECT as the reference. Further, we applied the PET-enabled DECT method in another patient study to evaluate bone lesions.

Results

Compared to the standard MLAA, results from the kernel MLAA showed significantly improved image quality. PET-enabled DECT with the kernel MLAA was able to generate fractional images that were comparable to the x-ray DECT, with high correlation coefficients for both the phantom study and human subject study (R > 0.99). The application study also indicates that PET-enabled DECT has potential to characterize bone lesions.

Conclusion

Results from this study have demonstrated the feasibility of this PET-enabled method for CT imaging and material decomposition. PET-enabled DECT shows promise to provide comparable results to x-ray DECT.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.