An Experimental Proof that Resistance‐Switching Memory Cells are not Memristors
Skip to main content
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

An Experimental Proof that Resistance‐Switching Memory Cells are not Memristors


It has been suggested that all resistive-switching memory cells are memristors. The latter are hypothetical, ideal devices whose resistance, as originally formulated, depends only on the net charge that traverses them. Recently, an unambiguous test has been proposed [J. Phys. D: Appl. Phys. {\bf 52}, 01LT01 (2019)] to determine whether a given physical system is indeed a memristor or not. Here, we experimentally apply such a test to both in-house fabricated Cu-SiO2 and commercially available electrochemical metallization cells. Our results unambiguously show that electrochemical metallization memory cells are not memristors. Since the particular resistance-switching memories employed in our study share similar features with many other memory cells, our findings refute the claim that all resistance-switching memories are memristors. They also cast doubts on the existence of ideal memristors as actual physical devices that can be fabricated experimentally. Our results then lead us to formulate two memristor impossibility conjectures regarding the impossibility of building a model of physical resistance-switching memories based on the memristor model.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View