Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Evaluating a Foundation Artificial Intelligence Model for Glaucoma Detection Using Color Fundus Photographs

Abstract

Purpose

To evaluate RETFound, a foundation artificial intelligence model, using a diverse clinical research dataset to assess its accuracy in detecting glaucoma using optic disc photographs. The model's accuracy for glaucoma detection was evaluated across race, age, glaucoma severity, and various training cycles (epochs) and dataset sample sizes.

Design

Evaluation of a diagnostic technology.

Participants

The study included 9787 color fundus photographs (CFPs) from 2329 participants of diverse race (White [73.4%], Black [13.6%] and other [13%]), disease severity (21.8% mild glaucoma, 7.2% moderate or advanced glaucoma, 60.3% not glaucoma, and 10.7% unreported), and age (48.8% <60 years, 51.1% >60 years) from the Diagnostic Innovations in Glaucoma Study and the African Descent and Glaucoma Evaluation Study. All fundus photographs were graded as "Glaucomatous" or "Non-glaucomatous."

Methods

The study employed RETFound, a self-supervised learning model, to perform binary glaucoma classification. The diagnostic accuracy of RETFound was iteratively tested across different combinations of dataset sample sizes (50-2000 optic disc photographs), training cycles (5-50), and study subpopulations stratified by severity of glaucoma, age, and race).

Main outcome measures

Diagnostic accuracy area under the receiver operating characteristic curve (AUC) for classifying CFP as "Glaucomatous" or "Non-glaucomatous."

Results

Performance increased with larger training datasets and more training cycles, improving from 50 training images and 5 epochs (AUC: 0.52) to 2000 training images and 50 epochs (AUC: 0.86), with reduced gain in performance from approximately 500 and 1000 training images (AUC of 0.82 and 0.83, respectively). Performance was consistent across race and age for all training size and cycle number combinations: Black (AUC = 0.87) vs. other (AUC = 0.86), and >60 years (AUC = 0.84) vs. <60 years (AUC = 0.87). Performance was significantly higher in patients with moderate to severe vs. mild glaucoma (AUC = 0.95 vs. 0.84, respectively).

Conclusions

Good RETFound performance was observed with a relatively small sample size of optic disc photographs used for fine-tuning and across differences in race and age. RETFound's ability to adapt across a range of CFP training conditions and populations suggests it is a promising tool to automate glaucoma detection in a variety of use cases.

Financial disclosures

Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View