Skip to main content
eScholarship
Open Access Publications from the University of California

UC Santa Barbara

UC Santa Barbara Previously Published Works bannerUC Santa Barbara

Evaluating the risk of phosphorus loss with a distributed watershed model featuring zero-order mobilization and first-order delivery

Abstract

Many semi-distributed models that simulate pollutants' losses from watersheds do not handle well detailed spatially distributed and temporal data with which to identify accurate and cost-effective strategies for controlling pollutants issuing from non-point sources. Such models commonly overlook the flow pathways of pollutants across the landscape. This work aims at closing such knowledge gap by developing a Spatially and Temporally Distributed Empirical model for Phosphorus Management (STEM-P) that simulates the daily phosphorus loss from source areas to receiving waters on a spatially-distributed grid-cell basis. STEM-P bypasses the use of complex mechanistic algorithms by representing the phosphorus mobilization and delivery processes with zero-order mobilization and first-order delivery, respectively. STEM-P was applied to a 217km2 watershed with mixed forest and agricultural land uses situated in southwestern China. The STEM-P simulation of phosphorus concentration at the watershed outlet approximated the observed data closely: the percent bias (Pbias) was -7.1%, with a Nash-Sutcliffe coefficient (ENS) of 0.80 on a monthly scale for the calibration period. The Pbias was 18.1%, with a monthly ENS equal to 0.72 for validation. The simulation results showed that 76% of the phosphorus load was transported with surface runoff, 25.2% of which came from 3.4% of the watershed area (classified as standard A critical source areas), and 55.3% of which originated from 17.1% of the watershed area (classified as standard B critical source areas). The standard A critical source areas were composed of 51% residences, 27% orchards, 18% dry fields, and 4% paddy fields. The standard B critical source areas were mainly paddy fields (81%). The calculated spatial and temporal patterns of phosphorus loss and recorded flow pathways identified with the STEM-P simulations revealed the field-scale critical source areas and guides the design and placement of effective practices for non-point source pollution control and water quality conservation.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View