Skip to main content
eScholarship
Open Access Publications from the University of California

UC Santa Barbara

UC Santa Barbara Previously Published Works bannerUC Santa Barbara

A Convex Pseudolikelihood Framework for High Dimensional Partial Correlation Estimation with Convergence Guarantees

Abstract

Sparse high dimensional graphical model selection is a topic of much interest in modern day statistics. A popular approach is to apply l1-penalties to either parametric likelihoods, or regularized regression/pseudolikelihoods, with the latter having the distinct advantage that they do not explicitly assume Gaussianity. As none of the popular methods proposed for solving pseudolikelihood-based objective functions have provable convergence guarantees, it is not clear whether corresponding estimators exist or are even computable, or if they actually yield correct partial correlation graphs. We propose a new pseudolikelihood-based graphical model selection method that aims to overcome some of the shortcomings of current methods, but at the same time retain all their respective strengths. In particular, we introduce a novel framework that leads to a convex formulation of the partial covariance regression graph problem, resulting in an objective function comprised of quadratic forms. The objective is then optimized via a co-ordinatewise approach. The specific functional form of the objective function facilitates rigorous convergence analysis leading to convergence guarantees; an important property that cannot be established by using standard results, when the dimension is larger than the sample size, as is often the case in high dimensional applications. These convergence guarantees ensure that estimators are well defined under very general conditions and are always computable. In addition, the approach yields estimators that have good large sample properties and also respect symmetry. Furthermore, application to simulated and real data, timing comparisons and numerical convergence is demonstrated. We also present a novel unifying framework that places all graphical pseudolikelihood methods as special cases of a more general formulation, leading to important insights.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View