- Main
Estimating good discrete partitions from observed data: Symbolic false nearest neighbors
Abstract
A symbolic analysis of observed time series requires a discrete partition of a continuous state space containing the dynamics. A particular kind of partition, called "generating," preserves all deterministic dynamical information in the symbolic representation, but such partitions are not obvious beyond one dimension. Existing methods to find them require significant knowledge of the dynamical evolution operator. We introduce a statistic and algorithm to refine empirical partitions for symbolic state reconstruction. This method optimizes an essential property of a generating partition, avoiding topological degeneracies, by minimizing the number of "symbolic false nearest neighbors." It requires only the observed time series and is sensible even in the presence of noise when no truly generating partition is possible.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-