Skip to main content
Open Access Publications from the University of California

UC Santa Barbara

UC Santa Barbara Previously Published Works bannerUC Santa Barbara

The F pilus mediates a novel pathway of CDI toxin import

Published Web Location

Contact-dependent growth inhibition (CDI) is a widespread form of inter-bacterial competition that requires direct cell-to-cell contact. CDI(+) inhibitor cells express CdiA effector proteins on their surface. CdiA binds to specific receptors on susceptible target bacteria and delivers a toxin derived from its C-terminal region (CdiA-CT). Here, we show that purified CdiA-CT(536) toxin from uropathogenic Escherichia coli 536 translocates into bacteria, thereby by-passing the requirement for cell-to-cell contact during toxin delivery. Genetic analyses demonstrate that the N-terminal domain of CdiA-CT(536) is necessary and sufficient for toxin import. The CdiA receptor plays no role in this import pathway; nor do the Tol and Ton systems, which are exploited to internalize colicin toxins. Instead, CdiA-CT(536) import requires conjugative F pili. We provide evidence that the N-terminal domain of CdiA-CT(536) interacts with F pilin, and that pilus retraction is critical for toxin import. This pathway is reminiscent of the strategy used by small RNA leviviruses to infect F(+) cells. We propose that CdiA-CT(536) mimics the pilin-binding maturation proteins of leviviruses, allowing the toxin to bind F pili and become internalized during pilus retraction.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View