Skip to main content
eScholarship
Open Access Publications from the University of California

UC Santa Barbara

UC Santa Barbara Previously Published Works bannerUC Santa Barbara

Comparative Metabolic Response between Cucumber (Cucumis sativus) and Corn (Zea mays) to a Cu(OH)2 Nanopesticide

Abstract

Due to their unique properties, copper-based nanopesticides are emerging in the market. Thus, understanding their effect on crop plants is very important. Metabolomics can capture a snapshot of cellular metabolic responses to a stressor. We selected maize and cucumber as model plants for exposure to different doses of Cu(OH)2 nanopesticide. GC-TOF-MS-based metabolomics was employed to determine the metabolic responses of these two species. Results revealed significant differences in metabolite profile changes between maize and cucumber. Furthermore, the Cu(OH)2 nanopesticide induced metabolic reprogramming in both species, but in different manners. In maize, several intermediate metabolites of the glycolysis pathway and tricarboxylic acid cycle (TCA) were up-regulated, indicating the energy metabolism was activated. In addition, the levels of aromatic compounds (4-hydroxycinnamic acid and 1,2,4-benzenetriol) and their precursors (phenylalanine, tyrosine) were enhanced, indicating the activation of shikimate-phenylpropanoid biosynthesis in maize leaves, which is an antioxidant defense-related pathway. In cucumber, arginine and proline metabolic pathways were the most significantly altered pathway. Both species exhibited altered levels of fatty acids and polysaccharides, suggesting the cell membrane and cell wall composition may change in response to Cu(OH)2 nanopesticide. Thus, metabolomics helps to deeply understand the differential response of these plants to the same nanopesticide stressor.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View