Skip to main content
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Subpopulation augmentation among habitat patches as a tool to manage an endangered Mojave Desert wetlands-dependent rodent during anthropogenic restricted water climate regimes.

  • Author(s): López-Pérez, Andrés M;
  • Foley, Janet;
  • Roy, Austin;
  • Pesapane, Risa;
  • Castle, Stephanie;
  • Poulsen, Amanda;
  • Clifford, Deana L
  • et al.

Intensive management may be necessary to protect some highly vulnerable endangered species, particularly those dependent on water availability regimes that might be disrupted by ongoing climate change. The Amargosa vole (Microtus californicus scirpensis) is an increasingly imperiled rodent constrained to rare wetland habitat in the Mojave Desert. In 2014 and 2016, we trapped and radio-collared 30 voles, 24 were translocated and six remained at donor and recipient marshes as resident control voles. Soft-release was performed followed by remote camera and radio-telemetry monitoring. Although comparative metrics were not statistically significant, the mean maximum known distance moved (MDM) was longer for translocated (82.3 ± 14.6 m) vs. resident-control voles (74.9 ± 17.5 m) and for female (98.4 ± 19.9 m) vs. male (57.8 ± 9.1 m) voles. The mean area occupied (AO) tended to be greater in female (0.15 ± 0.04 ha) vs. male (0.12 ± 0.03 ha) voles, and control voles (0.15 ± 0.05 ha) compared with translocated voles (0.13 ± 0.03 ha). The mean minimum known time alive (MTA) was 38.2 ± 19.4 days for resident-control voles and 47.0 ± 10.6 days for translocated voles. Female survival (55.7 ± 14.3 days) exceeded that of males (31.5 ± 9.4 days) regardless of study group. Activity in bulrush/rushes mix and bulrush vegetation types was strongly and significantly overrepresented compared with salt grass and rushes alone, and habitat selection did not differ between resident and translocated voles. Our results provide ecological and methodological insights for future translocations as part of a strategy of promoting long-term survival of an extremely endangered small mammal in a wild desert environment.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View