Skip to main content
eScholarship
Open Access Publications from the University of California

Activation of the metabolic sensor-AMP activated protein kinase reverses impairment of angiogenesis in aging myocardial microvascular endothelial cells. Implications for the aging heart.

  • Author(s): Ahluwalia, A
  • Tarnawski, A S
  • et al.
Abstract

Impairment of angiogenesis - new capillary blood vessel formation from pre-existing vessels, is frequent in aging tissues and cells. Reduced angiogenesis in aging individuals is associated with increased incidence of myocardial infarctions and other cardiovascular diseases. Therefore there is a need to develop novel strategies to enhance angiogenesis in aging individuals. Our previous study demonstrated aging-related impairment of angiogenesis in aging (vs. young) rat myocardial microvascular endothelial cells (MMEC), and identified reduced activation of the vascular endothelial growth factor (VEGF, the most potent stimulator of angiogenesis) gene as the main underlying mechanism. In the present study we examined the possibility of increasing angiogenesis and activating VEGF gene expression in aging MMECs using a chemical activator of the metabolic sensor - AMP activated protein kinase (AMPK). We hypothesized that activation of VEGF gene in aging MMECs by AMPK would stimulate angiogenesis and reverse the impairment in angiogenesis seen in these cells. We used MMECs isolated from aging (24 months old) Fisher F-344 rats and treated them with 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), a specific pharmacological stimulator of AMPK. We examined: 1) in vitro angiogenesis; and 2) the expression of phosphorylated AMPK, VEGF, and P-MAPK/Erk1/2. Treatment of aging MMECs with AICAR increased in vitro angiogenesis and VEGF mRNA expression by 2.1-fold and 3.7-fold, respectively. Furthermore, AICAR treatment resulted in phosphorylation of MAPK/Erk1/2. This study demonstrated the successful use AICAR to reverse aging-related impairment of angiogenesis in aging MMECs by enhancing VEGF gene expression and also identified phosphorylation of MAPK/Erk1/2 as a likely mechanism of these changes.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View