Skip to main content
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Intermediate-Depth Earthquakes Controlled by Incoming Plate Hydration Along Bending-Related Faults


Intermediate-depth earthquakes (focal depths 70–300 km) are enigmatic with respect to their nucleation and rupture mechanism and the properties controlling their spatial distribution. Several recent studies have shown a link between intermediate-depth earthquakes and the thermal-petrological path of subducting slabs in relation to the stability field of hydrous minerals. Here we investigate whether the structural characteristics of incoming plates can be correlated with the intermediate-depth seismicity rate. We quantify the structural characteristics of 17 incoming plates by estimating the maximum fault throw of bending-related faults. Maximum fault throw exhibits a statistically significant correlation with the seismicity rate. We suggest that the correlation between fault throw and intermediate-depth seismicity rate indicates the role of hydration of the incoming plate, with larger faults reflecting increased damage, greater fluid circulation, and thus more extensive slab hydration.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View