Skip to main content
eScholarship
Open Access Publications from the University of California

UC Santa Barbara

UC Santa Barbara Previously Published Works bannerUC Santa Barbara

Giving credit to reforestation for water quality benefits.

  • Author(s): Keller, Arturo A
  • Fox, Jessica
  • et al.
Abstract

While there is a general belief that reforesting marginal, often unprofitable, croplands can result in water quality benefits, to date there have been very few studies that have attempted to quantify the magnitude of the reductions in nutrient (N and P) and sediment export. In order to determine the magnitude of a credit for water quality trading, there is a need to develop quantitative approaches to estimate the benefits from forest planting in terms of load reductions. Here we first evaluate the availability of marginal croplands (i.e. those with low infiltration capacity and high slopes) within a large section of the Ohio River Basin (ORB) to assess the magnitude of the land that could be reforested. Next, we employ the Nutrient Tracking Tool (NTT) to study the reduction in N, P and sediment losses from converting corn or corn/soy rotations to forested lands, first in a case study and then for a large region within the ORB. We find that after reforestation, N losses can decrease by 40 to 80 kg/ha-yr (95-97% reduction), while P losses decrease by 1 to 4 kg/ha-yr (96-99% reduction). There is a significant influence of local conditions (soils, previous crop management practices, meteorology), which can be considered with NTT and must be taken into consideration for specific projects. There is also considerable interannual and monthly variability, which highlights the need to take the longer view into account in nutrient credit considerations for water quality trading, as well as in monitoring programs. Overall, there is the potential for avoiding 60 million kg N and 2 million kg P from reaching the streams and rivers of the northern ORB as a result of conversion of marginal farmland to tree planting, which is on the order of 12% decrease for TN and 5% for TP, for the entire basin. Accounting for attenuation, this represents a significant fraction of the goal of the USEPA Gulf of Mexico Hypoxia Task Force to reduce TN and TP reaching the dead zone in the Gulf of Mexico, the second largest dead zone in the world. More broadly, the potential for targeted forest planting to reduce nutrient loading demonstrated in this study suggests further consideration of this approach for managing water quality in waterways throughout the world. The study was conducted using computational models and there is a need to evaluate the results with empirical observations.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View