Skip to main content
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Rice NRR, a negative regulator of disease resistance, interacts with Arabidopsis NPR1 and rice NH1.


Arabidopsis NPR1/NIM1 is a key regulator of systemic acquired resistance (SAR), which confers lasting broad-spectrum resistance. Over-expression of Arabidopsis NPR1 or the NPR1 homolog 1 (NH1) in rice results in enhanced resistance to the pathogen Xanthomonasoryzae pv. oryzae (Xoo), suggesting the presence of a related defense pathway in rice. We investigated this pathway in rice by identifying proteins that interact with NH1. Here we report the isolation and characterization of a rice cDNA encoding a novel protein, named NRR (for negative regulator of resistance). NRR interacts with NPR1 in the NPR1-interacting domain (NI25) consisting of 25 amino acids. NRR also interacts with NH1; however, NI25 was not sufficient for a strong interaction, indicating a difference between the rice and the Arabidopsis proteins. Silencing of NRR in rice had little effect on resistance to Xoo. When constitutively over-expressed in rice, NRR affected basal resistance, age-related resistance and Xa21-mediated resistance, causing enhanced susceptibility to Xoo. This phenotype was correlated with elevated NRR mRNA and protein levels and increased Xoo growth. Over-expression of NRR suppressed the induction of defense-related genes. NRR:GFP (green fluorescent protein) protein was localized to the nucleus, indicating that NRR may act directly to suppress the activation of defense genes. The fact that NRR compromises Xa21-mediated resistance indicates cross-talk or overlap between NH1- and Xa21-mediated pathways.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View