Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Influence of Wheat Straw Pelletizing and Inclusion Rate in Dry Rolled or Steam-flaked Corn-based Finishing Diets on Characteristics of Digestion for Feedlot Cattle.

  • Author(s): Manríquez, OM
  • Montano, MF
  • Calderon, JF
  • Valdez, JA
  • Chirino, JO
  • Gonzalez, VM
  • Salinas-Chavira, J
  • Mendoza, GD
  • Soto, S
  • Zinn, RA
  • et al.
Abstract

Eight Holstein steers (216±48 kg body weight) fitted with ruminal and duodenal cannulas were used to evaluate effects of wheat straw processing (ground vs pelleted) at two straw inclusion rates (7% and 14%; dry matter basis) in dry rolled or steam-flaked corn-based finishing diets on characteristics of digestion. The experimental design was a split plot consisting of two simultaneous 4×4 Latin squares. Increasing straw level reduced ruminal (p<0.01) and total tract (p = 0.03) organic matter (OM) digestion. As expected, increasing wheat straw level from 7% to 14% decreased (p<0.05) ruminal and total tract digestion of OM. Digestion of neutral detergent fiber (NDF) and starch, per se, were not affected (p>0.10) by wheat straw level. Likewise, straw level did not influence ruminal acetate and propionate molar proportions or estimated methane production (p>0.10). Pelleting straw did not affect (p≥0.48) ruminal digestion of OM, NDF, and starch, or microbial efficiency. Ruminal feed N digestion was greater (7.4%; p = 0.02) for ground than for pelleted wheat straw diets. Although ruminal starch digestion was not affected by straw processing, post-ruminal (p<0.01), and total-tract starch (p = 0.05) digestion were greater for ground than for pelleted wheat straw diets, resulting in a tendency for increased post-ruminal (p = 0.06) and total tract (p = 0.07) OM digestion. Pelleting wheat straw decreased (p<0.01) ruminal pH, although ruminal volatile fatty acids (VFA) concentration and estimated methane were not affected (p≥0.27). Ruminal digestion of OM and starch, and post-ruminal and total tract digestion of OM, starch and N were greater (p<0.01) for steam-flaked than for dry rolled corn-based diets. Ruminal NDF digestion was greater (p = 0.02) for dry rolled than for steam-flaked corn, although total tract NDF digestion was unaffected (p = 0.94). Ruminal microbial efficiency and ruminal degradation of feed N were not affected (p>0.14) by corn processing. However, microbial N flow to the small intestine and ruminal N efficiency (non-ammonia N flow to the small intestine/N intake) were greater (p<0.01) for steam-flaked than for dry rolled corn-based diets. Ruminal pH and total VFA concentration were not affected (p≥ 0.16) by corn processing method. Compared with dry rolled corn, steam-flaked corn-based diets resulted in decreased acetate:propionate molar ratio (p = 0.02). It is concluded that at 7% or 14% straw inclusion rate, changes in physical characteristics of wheat straw brought about by pelleting negatively impact OM digestion of both steam-flaked and dry-rolled corn-based finishing diets. This effect is due to decreased post-ruminal starch digestion. Replacement of ground straw with pelleted straw also may decrease ruminal pH.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View