Skip to main content
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Inhibition of photosynthesis by a fluoroquinolone antibiotic.

Published Web Location

Recent microcosm studies have revealed that fluoroquinolone (FQ) antibiotics can have ecotoxicological impacts on photosynthetic organisms, but little is known about the mechanisms of toxicity. We employed a combination of modeling and experimental techniques to explore how FQs may have these unintended secondary toxic effects. Structure-activity analysis revealed that the quinolone ring and secondary amino group typically present in FQ antibiotics may mediate their action as quinone site inhibitors in photosystem II (PS-II), a key enzyme in photosynthetic electron transport. Follow-up molecular simulations involving nalidixic acid (Naldx), a nonfluorinated quinolone with a demonstrated adverse impact on photosynthesis, and ciprofloxacin (Cipro), the most commonly used FQ antibiotic, showed that both may interfere stereochemically with the catalytic activity of reaction center II (RC-II), the pheophytin-quinone-type center present in PS-II. Naldx can occupy the same binding site as the secondary quinone acceptor (Q(B)) in RC-II and interact with amino acid residues required for the enzymatic reduction of Q(B). Cipro binds in a somewhat different manner, suggesting a different mechanism of interference. Fluorescence induction kinetics, a common method of screening for PS-II inhibition, recorded for photoexcited thylakoid membranes isolated from Cipro-exposed spinach chloroplasts, indicated that Cipro interferes with the transfer of energy from excited antenna chlorophyll molecules to the reaction center in RC-II ([Cipro] >or= 5 microM in vitro and >or=10 microM in vivo) and thus delays the kinetics of photoreduction of the primary quinone acceptor (Q(A); [Cipro] >or= 0.6 microM in vitro). Spinach plants exposed to Cipro exhibited severe growth inhibition characterized by a decrease in both the synthesis of leaves and growth of the roots ([Cipro] >or= 0.5 microM in vivo). Our results thus demonstrate that Cipro and related FQ antibiotics may interfere with photosynthetic pathways, in addition to causing morphological deformities in higher plants.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View