Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Making the Improbable Possible: Generalizing Models Designed for a Syndrome-Based, Heterogeneous Patient Landscape

Abstract

Syndromic conditions, such as sepsis, are commonly encountered in the intensive care unit. Although these conditions are easy for clinicians to grasp, these conditions may limit the performance of machine-learning algorithms. Individual hospital practice patterns may limit external generalizability. Data missingness is another barrier to optimal algorithm performance and various strategies exist to mitigate this. Recent advances in data science, such as transfer learning, conformal prediction, and continual learning, may improve generalizability of machine-learning algorithms in critically ill patients. Randomized trials with these approaches are indicated to demonstrate improvements in patient-centered outcomes at this point.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View