Skip to main content
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Overexpression of GSK3-like Kinase 5 (OsGSK5) in rice (Oryza sativa) enhances salinity tolerance in part via preferential carbon allocation to root starch

  • Author(s): Thitisaksakul, Maysaya;
  • Maria C. Arias;
  • Shaoyun Dong;
  • Diane M. Beckles
  • et al.

Published Web Location

Rice (Oryza sativa L.) is very sensitive to soil salinity. To identify endogenous mechanisms that may help rice to better survive salt stress, we studied a rice GSK3-like isoform (OsGSK5), an orthologue of a Medicago GSK3 previously shown to enhance salinity tolerance in Arabidopsis by altering carbohydrate metabolism. We wanted to determine whether OsGSK5 functions similarly in rice. OsGSK5 was cloned and sequence, expression, evolutionary and functional analyses were conducted. OsGSK5 was expressed highest in rice seedling roots and was both salt and sugar starvation inducible in this tissue. A short-term salt-shock (150mM) activated OsGSK5, whereas moderate (50mM) salinity over the same period repressed the transcript. OsGSK5 response to salinity was due to an ionic effect since it was unaffected by polyethylene glycol. We engineered a rice line with 3.5-fold higher OsGSK5 transcript, which better tolerated cultivation on saline soils (EC=8 and 10dSm-2). This line produced more panicles and leaves, and a higher shoot biomass under high salt stress than the control genotypes. Whole-plant 14C-tracing and correlative analysis of OsGSK5 transcript with eco-physiological assessments pointed to the accelerated allocation of carbon to the root and its deposition as starch, as part of the tolerance mechanism.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View