Skip to main content
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Highly efficient maternal-fetal Zika virus transmission in pregnant rhesus macaques.

  • Author(s): Nguyen, Sydney M
  • Antony, Kathleen M
  • Dudley, Dawn M
  • Kohn, Sarah
  • Simmons, Heather A
  • Wolfe, Bryce
  • Salamat, M Shahriar
  • Teixeira, Leandro BC
  • Wiepz, Gregory J
  • Thoong, Troy H
  • Aliota, Matthew T
  • Weiler, Andrea M
  • Barry, Gabrielle L
  • Weisgrau, Kim L
  • Vosler, Logan J
  • Mohns, Mariel S
  • Breitbach, Meghan E
  • Stewart, Laurel M
  • Rasheed, Mustafa N
  • Newman, Christina M
  • Graham, Michael E
  • Wieben, Oliver E
  • Turski, Patrick A
  • Johnson, Kevin M
  • Post, Jennifer
  • Hayes, Jennifer M
  • Schultz-Darken, Nancy
  • Schotzko, Michele L
  • Eudailey, Josh A
  • Permar, Sallie R
  • Rakasz, Eva G
  • Mohr, Emma L
  • Capuano, Saverio
  • Tarantal, Alice F
  • Osorio, Jorge E
  • O'Connor, Shelby L
  • Friedrich, Thomas C
  • O'Connor, David H
  • Golos, Thaddeus G
  • et al.

Infection with Zika virus (ZIKV) is associated with human congenital fetal anomalies. To model fetal outcomes in nonhuman primates, we administered Asian-lineage ZIKV subcutaneously to four pregnant rhesus macaques. While non-pregnant animals in a previous study contemporary with the current report clear viremia within 10-12 days, maternal viremia was prolonged in 3 of 4 pregnancies. Fetal head growth velocity in the last month of gestation determined by ultrasound assessment of head circumference was decreased in comparison with biparietal diameter and femur length within each fetus, both within normal range. ZIKV RNA was detected in tissues from all four fetuses at term cesarean section. In all pregnancies, neutrophilic infiltration was present at the maternal-fetal interface (decidua, placenta, fetal membranes), in various fetal tissues, and in fetal retina, choroid, and optic nerve (first trimester infection only). Consistent vertical transmission in this primate model may provide a platform to assess risk factors and test therapeutic interventions for interruption of fetal infection. The results may also suggest that maternal-fetal ZIKV transmission in human pregnancy may be more frequent than currently appreciated.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View