Skip to main content
eScholarship
Open Access Publications from the University of California

Effects of vasodilation on intrinsic optical signals in the mammalian brain: A phantom study

  • Author(s): Tanner, K
  • Beitel, E
  • D'Amico, E
  • Mantulin, WW
  • Gratton, E
  • et al.

Published Web Location

https://doi.org/10.1117/1.2398920Creative Commons Attribution 4.0 International Public License
Abstract

Using a broadband spectral technique, we recently showed, [J. Biomed. Opt. 10, 064009 (2005)] that during visual stimulation of the cat brain there were not only changes in oxy- and deoxyhemoglobin levels, reminiscent of the optical blood oxygenation level dependence (BOLD) effect reported in humans, but also the apparent water content of the tissue and the optical scattering contribution decreased during stimulation. These relatively fast changes (in seconds) in water tissue content are difficult to explain in physiological terms. We developed a simple model to explain how local vasodilation, which occurs as a result of the stimulation, could cause this apparent change in water content. We show that in a phantom model we can obtain spectral effects similar to those observed in the cat brain such as the apparent decrease of the water spectral component without changing the water content of the bath in which the phantom measurements were performed. Furthermore, using the phantom model, we show that the relative apparent changes in the spectral components due to vasodilation during stimulation are roughly comparable in magnitude to the changes in tissue chromophores due to the optical equivalent of the BOLD effect reported in the literature. © 2006 Society of Photo-Optical Instrumentation Engineers.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View