Skip to main content
eScholarship
Open Access Publications from the University of California

UC Riverside

UC Riverside Previously Published Works bannerUC Riverside

Convenient categories of smooth spaces

Published Web Location

http://arxiv.org/abs/0807.1704
No data is associated with this publication.
Abstract

A 'Chen space' is a set X equipped with a collection of 'plots', i.e., maps from convex sets to X, satisfying three simple axioms. While an individual Chen space can be much worse than a smooth manifold, the category of all Chen spaces is much better behaved than the category of smooth manifolds. For example, any subspace or quotient space of a Chen space is a Chen space, and the space of smooth maps between Chen spaces is again a Chen space. Souriau's 'diffeological spaces' share these convenient properties. Here we give a unified treatment of both formalisms. Following ideas of Penon and Dubuc, we show that Chen spaces, diffeological spaces, and even simplicial complexes are examples of 'concrete sheaves on a concrete site'. As a result, the categories of such spaces are locally Cartesian closed, with all limits, all colimits, and a weak subobject classifier. For the benefit of differential geometers, our treatment explains most of the category theory we use. © 2011 John C. Baez and Alexander E. Hoffnung.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item