- Main
Relationship between kurtosis and bi-exponential characterization of high b-value diffusion-weighted imaging: application to prostate cancer.
Published Web Location
https://doi.org/10.1177/0284185118770889Abstract
BACKGROUND:High b-value diffusion-weighted imaging has application in the detection of cancerous tissue across multiple body sites. Diffusional kurtosis and bi-exponential modeling are two popular model-based techniques, whose performance in relation to each other has yet to be fully explored. PURPOSE:To determine the relationship between excess kurtosis and signal fractions derived from bi-exponential modeling in the detection of suspicious prostate lesions. MATERIAL AND METHODS:This retrospective study analyzed patients with normal prostate tissue (n = 12) or suspicious lesions (n = 13, one lesion per patient), as determined by a radiologist whose clinical care included a high b-value diffusion series. The observed signal intensity was modeled using a bi-exponential decay, from which the signal fraction of the slow-moving component was derived ( SFs). In addition, the excess kurtosis was calculated using the signal fractions and ADCs of the two exponentials ( KCOMP). As a comparison, the kurtosis was also calculated using the cumulant expansion for the diffusion signal ( KCE). RESULTS:Both K and KCE were found to increase with SFs within the range of SFs commonly found within the prostate. Voxel-wise receiver operating characteristic performance of SFs, KCE, and KCOMP in discriminating between suspicious lesions and normal prostate tissue was 0.86 (95% confidence interval [CI] = 0.85 - 0.87), 0.69 (95% CI = 0.68-0.70), and 0.86 (95% CI = 0.86-0.87), respectively. CONCLUSION:In a two-component diffusion environment, KCOMP is a scaled value of SFs and is thus able to discriminate suspicious lesions with equal precision . KCE provides a computationally inexpensive approximation of kurtosis but does not provide the same discriminatory abilities as SFs and KCOMP.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-