Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Electronic Theses and Dissertations bannerUCLA

Model Reduction of Unconfined Groundwater Flow Using Proper Orthogonal Decomposition and the Discrete Empirical Interpolation Method

Abstract

Nonlinear groundwater flow models have the propensity to be overly complex leading to burdensome computational demands. Reduced modelling techniques are used to develop an approximation of the original model that has smaller dimensionality and faster run times. The reduced model proposed is a combination of proper orthogonal decomposition (POD) and the discrete empirical interpolation method (DEIM). Solutions of the full model (snapshots) are collected to represent the physical dynamics of the system and Galerkin projection allows the formulation of a reduced model that lies in a subspace of the full model. Interpolation points are added through DEIM to eliminate the reduced model’s dependence on the dimension of the full model. POD is shown to effectively reduce the dimension of the full model and DEIM is shown to speed up the solution by further reducing the dimension of the nonlinear calculations. To show the concept can work for unconfined groundwater flow model, with added nonlinear forcings, one-dimensional and two-dimensional test cases are constructed in MODFLOW-OWHM. POD and DEIM are added to MODFLOW as a modular package. Comparing the POD and the POD-DEIM reduced models, the experimental results indicate similar reduction in dimension size with additional computation speed up for the added interpolation. The hyper-reduction method presented is effective for models that have fine discretization in space and/or time as well as nonlinearities with respect to the state variable. The dual reduction approach ensures that, once constructed, the reduced model can be solved in an equation system that depends only on reduced dimensions.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View