Skip to main content
eScholarship
Open Access Publications from the University of California

Multiple paternity and extra-group fertilizations in a natural population of California grunion (Leuresthes tenuis), a beach-spawning marine fish

  • Author(s): Byrne, Rosemary J.
  • Avise, John C.
  • et al.
Abstract

Although individuals in many fish species move to shallow waters to spawn, the California grunion (Leuresthes tenuis) is almost unique in its constitutive display of synchronous full-emergence beach spawning. During a spawning event, fish ride large waves onshore to spawn on beach land, where their eggs incubate terrestrially. Here, we employ molecular markers to ascertain how this unusual reproductive behavior impacts genetic parentage. We developed and utilized four highly polymorphic microsatellite markers to assess maternal and paternal contributions in a total of 682 progeny from 17 nests of a natural population of L. tenuis. Alleles deduced to be of paternal origin in progeny were used to determine the minimum number of sires per nest and to estimate the true number of sires per nest via Bayesian analysis. We document the following: (a) no instances of multiple maternity for progeny within a nest; (b) a high frequency of nests (88%) with multiple paternity; and (c) an appreciable fraction of nests (18%) in which the estimated number of genetic sires (as many as nine) proved to be greater than the observed number of male attendants, thus implicating occasional extra-group fertilization events. From these and other observations, we also conclude that spawning behavior in grunions may involve site choice but not explicit mate choice. In addition to providing the first analysis of molecular parentage in a beach-spawning fish, we compare our findings to those reported previously for a beach-spawning arthropod, and we discuss the forces that may be maintaining this peculiar reproductive behavior.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View