Variable Prioritization in Nonlinear Black Box Methods: A Genetic Association Case Study
Skip to main content
eScholarship
Open Access Publications from the University of California

Variable Prioritization in Nonlinear Black Box Methods: A Genetic Association Case Study

  • Author(s): Crawford, L
  • Flaxman, SR
  • Runcie, DE
  • West, M
  • et al.
Abstract

The central aim in this paper is to address variable selection questions in nonlinear and nonparametric regression. Motivated by statistical genetics, where nonlinear interactions are of particular interest, we introduce a novel and interpretable way to summarize the relative importance of predictor variables. Methodologically, we develop the "RelATive cEntrality" (RATE) measure to prioritize candidate genetic variants that are not just marginally important, but whose associations also stem from significant covarying relationships with other variants in the data. We illustrate RATE through Bayesian Gaussian process regression, but the methodological innovations apply to other "black box" methods. It is known that nonlinear models often exhibit greater predictive accuracy than linear models, particularly for phenotypes generated by complex genetic architectures. With detailed simulations and two real data association mapping studies, we show that applying RATE enables an explanation for this improved performance.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View