Skip to main content
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Photoinduced Heterocyclic Ring Opening of Furfural: Distinct Open-Chain Product Identification by Ultrafast X‑ray Transient Absorption Spectroscopy


The ultraviolet-induced photochemistry of five-membered heterocyclic rings often involves ring opening as a prominent excited-state relaxation pathway. The identification of this particular photoinduced mechanism, however, presents a challenge for many experimental methods. We show that femtosecond X-ray transient absorption spectroscopy at the carbon K-edge (∼284 eV) provides core-to-valence spectral fingerprints that enable the unambiguous identification of ring-opened isomers of organic heterocycles. The unique differences in the electronic structure between a carbon atom bonded to the oxygen in the ring versus a carbon atom set free of the oxygen in the ring-opened product are readily apparent in the X-ray spectra. Ultrafast ring opening via C-O bond fission occurs within ∼350 fs in 266-nm photoexcited furfural, as evidenced by fingerprint core (carbon 1s) electronic transitions into a nonbonding orbital of the open-chain carbene intermediate at 283.3 eV. The lack of recovery of the 1sπ* ground-state depletion in furfural at 286.4 eV indicates that internal conversion to the ground state is a minor channel. These experimental results, augmented by recent advances in the generation of isolated attosecond pulses at the carbon K-edge, will pave the way for probing ring-opened conical intersection dynamics in the future.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View