Skip to main content
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Exchange protein directly activated by cAMP modulates regulatory T-cell-mediated immunosuppression.


The cAMP signalling pathway plays an essential role in immune functions. In the present study we examined the role of the cAMP/EPAC1 (exchange protein directly activated by cAMP) axis in regulatory T-cell (Treg)-mediated immunosuppression using genetic and pharmacological approaches. Genetic deletion of EPAC1 in Tregs and effector T-cells (Teffs) synergistically attenuated Treg-mediated suppression of Teffs. Mechanistically, EPAC1 inhibition enhanced activation of the transcription factor STAT3 (signal transducer and activator of transcription 3) and up-regulated SMAD7 expression while down-regulating expression of SMAD4. Consequently, CD4+ T-cells were desensitized to transforming growth factor (TGF) β1, a cytokine employed by Tregs to exert a broad inhibitory function within the immune system. Furthermore, deletion of EPAC1 led to production of significant levels of ovalbumin IgG antibodies in a low-dose, oral-tolerance mouse model. These in vivo observations are consistent with the finding that EPAC1 plays an important role in Treg-mediated suppression. More importantly, pharmacological inhibition of EPAC1 using an EPAC-specific inhibitor recapitulates the EPAC1 deletion phenotype both in vivo and in vitro. The results of the present study show that EPAC1 boosts Treg-mediated suppression, and identifies EPAC1 as a target with broad therapeutic potential because Tregs are involved in numerous pathologies, including autoimmunity, infections and a wide range of cancers.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View