Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

A judgment and decision-making model for plant behavior.

  • Author(s): Karban, Richard
  • Orrock, John L
  • et al.

Published Web Location

https://doi.org/10.1002/ecy.2418
Abstract

Recently plant biologists have documented that plants, like animals, engage in many activities that can be considered as behaviors, although plant biologists currently lack a conceptual framework to understand these processes. Borrowing the well-established framework developed by psychologists, we propose that plant behaviors can be constructively modeled by identifying four distinct components: (1) a cue or stimulus that provides information, (2) a judgment whereby the plant perceives and processes this informative cue, (3) a decision whereby the plant chooses among several options based on their relative costs and benefits, and (4) action. Judgment for plants can be determined empirically by monitoring signaling associated with electrical, calcium, or hormonal fluxes. Decision-making can be evaluated empirically by monitoring gene expression or differential allocation of resources. We provide examples of the utility of this judgment and decision-making framework by considering cases in which plants either successfully or unsuccessfully induced resistance against attacking herbivores. Separating judgment from decision-making suggests new analytical paradigms (i.e., Bayesian methods for judgment and economic utility models for decision-making). Following this framework, we propose an experimental approach to plant behavior that explicitly manipulates the stimuli provided to plants, uses plants that vary in sensory abilities, and examines how environmental context affects plant responses. The concepts and approaches that follow from the judgment and decision-making framework can shape how we study and understand plant-herbivore interactions, biological invasions, plant responses to climate change, and the susceptibility of plants to evolutionary traps.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View