Skip to main content
eScholarship
Open Access Publications from the University of California

UC Santa Barbara

UC Santa Barbara Previously Published Works bannerUC Santa Barbara

Automated composite depth scale construction and estimates of sediment core extension

Abstract

A composite section, which reconstructs a continuous stratigraphic record from cores of multiple nearby holes, and its associated composite depth scale are important tools for analyzing sediment recovered from a drilling site. However, the standard technique for creating composite depth scales on drilling cruises does not correct for depth distortion within each core. Additionally, the splicing technique used to create composite sections often results in a 10-15% offset between composite depths and measured drill depths. We present a new automated compositing technique that better aligns stratigraphy across holes, corrects depth offsets, and could be performed aboard ship. By analyzing 618 cores from seven Ocean Drilling Program (ODP) sites, we estimate that ∼80% of the depth offset in traditional composite depth scales results from core extension during drilling and extraction. Average rates of extension are 12.4 ± 1.5% for calcareous and siliceous cores from ODP Leg 138 and 8.1 ± 1.1% for calcareous and clay-rich cores from ODP Leg 154. Also, average extension decreases as a function of depth in the sediment column, suggesting that elastic rebound is not the dominant extension mechanism. Copyright 2007 by the American Geophysical Union.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View