Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Understanding the catalytic chemisorption of the cyanogen chloride via breakthrough curve and genetic algorithm

Abstract

This study investigated the catalytic chemisorption of cyanogen chloride(CK) with a metal(ASZM) – triethylenediamine(TEDA) complex. XPS data, IR spectra, and DFT calculations demonstrated that the synergetic catalytic hydrolysis of CK by ASZM-TEDA is kinetically favorable, with the enhanced reactivity of water on the catalyst as the primary cause for the accelerated catalytic hydrolysis. To validate the results, ASZM-TEDA was impregnated into activated carbon beads to form a packed-bed reactor for this breakthrough experiment. The proposed species-transport equation parameters were fitted using the genetic algorithm, and the correlation between parameters was compared. The study concludes that TEDA can affect the diffusivity for overall mass transfer-related reactions and accelerate the catalytic reaction of metal with CK. This study is the first to describe chemisorbed breakthrough with catalyst reaction in-depth and provides insights into the optimized ratio between TEDA and metal complexes. This methodology can be applied to various breakthrough experiments with chemical reactions.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View