Skip to main content
eScholarship
Open Access Publications from the University of California

Exopolysaccharide microchannels direct bacterial motility and organize multicellular behavior

  • Author(s): Berleman, JE
  • Zemla, M
  • Remis, JP
  • Liu, H
  • Davis, AE
  • Worth, AN
  • West, Z
  • Zhang, A
  • Park, H
  • Bosneaga, E
  • Van Leer, B
  • Tsai, W
  • Zusman, DR
  • Auer, M
  • et al.
Abstract

© 2016 International Society for Microbial Ecology All rights reserved. The myxobacteria are a family of soil bacteria that form biofilms of complex architecture, aligned multilayered swarms or fruiting body structures that are simple or branched aggregates containing myxospores. Here, we examined the structural role of matrix exopolysaccharide (EPS) in the organization of these surface-dwelling bacterial cells. Using time-lapse light and fluorescence microscopy, as well as transmission electron microscopy and focused ion beam/scanning electron microscopy (FIB/SEM) electron microscopy, we found that Myxococcus xanthus cell organization in biofilms is dependent on the formation of EPS microchannels. Cells are highly organized within the three-dimensional structure of EPS microchannels that are required for cell alignment and advancement on surfaces. Mutants lacking EPS showed a lack of cell orientation and poor colony migration. Purified, cell-free EPS retains a channel-like structure, and can complement EPS - mutant motility defects. In addition, EPS provides the cooperative structure for fruiting body formation in both the simple mounds of M. xanthus and the complex, tree-like structures of Chondromyces crocatus. We furthermore investigated the possibility that EPS impacts community structure as a shared resource facilitating cooperative migration among closely related isolates of M. xanthus.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View