Skip to main content
eScholarship
Open Access Publications from the University of California

UC Santa Barbara

UC Santa Barbara Previously Published Works bannerUC Santa Barbara

A Scribble/Cdep/Rac pathway controls follower-cell crawling and cluster cohesion during collective border-cell migration.

Abstract

Collective cell movements drive normal development and metastasis. Drosophila border cells move as a cluster of 6-10 cells, where the role of the Rac GTPase in migration was first established. In border cells, as in most migratory cells, Rac stimulates leading-edge protrusion. Upstream Rac regulators in leaders have been identified; however, the regulation and function of Rac in follower border cells is unknown. Here, we show that all border cells require Rac, which promotes follower-cell motility and is important for cluster compactness and movement. We identify a Rac guanine nucleotide exchange factor, Cdep, which also regulates follower-cell movement and cluster cohesion. Scribble, Discs large, and Lethal giant larvae localize Cdep basolaterally and share phenotypes with Cdep. Relocalization of Cdep::GFP partially rescues Scribble knockdown, suggesting that Cdep is a major downstream effector of basolateral proteins. Thus, a Scrib/Cdep/Rac pathway promotes cell crawling and coordinated, collective migration in vivo.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View