Skip to main content
eScholarship
Open Access Publications from the University of California

The cloned avirulence gene avrPto induces disease resistance in tomato cultivars containing the Pto resistance gene.

  • Author(s): Ronald, P C
  • Salmeron, J M
  • Carland, F M
  • Staskawicz, B J
  • et al.
Abstract

Resistance of tomato plants to the bacterial pathogen Pseudomonas syringae pv. tomato race 0 is controlled by the locus Pto. A bacterial avirulence gene was cloned by constructing a cosmid library from an avirulent P. syringae pv. tomato race, conjugating the recombinants into a strain of P. syringae pv. maculicola virulent on a tomato cultivar containing Pto, and screening for those clones that converted the normally virulent phenotype to avirulence. The cloned gene, designated avrPto, reduced multiplication of P. syringae pv. tomato transconjugants specifically on Pto tomato lines, as demonstrated by bacterial growth curve analyses. Analysis of F2 populations revealed cosegregation of resistance to P. syringae pv. tomato transconjugants carrying avrPto with resistance to P. syringae pv. tomato race 0. Surprisingly, mutation of avrPto in P. syringae pv. tomato race 0 does not eliminate the avirulent phenotype of race 0, suggesting that additional, as yet uncharacterized, avirulence genes and/or resistance genes may contribute to specificity in the avrPto-Pto interaction. Genetic analysis indicates that this resistance gene(s) would be tightly linked to Pto. Interestingly, P. syringae pv. glycinea transconjugants carrying avrPto elicit a typical hypersensitive resistant response in the soybean cultivar Centennial, suggesting conservation of Pto function between two crop plants, tomato and soybean.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View