Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Towards combining backbone and sugar constraint in 3-3 bis-phosphonate tethered 2-4 bridged LNA oligonucleotide trimers.

Abstract

Therapeutic oligonucleotides are chemically modified to enhance their drug-like properties - including binding affinity for target RNA. Many nucleic acid analogs that enhance RNA binding affinity constrain the furanose sugar in an RNA-like sugar pucker. The improvements in binding affinity result primarily from increased off-rates with minimal effects on on-rates for hybridization. To identify alternate chemical modification strategies that can modulate on- and off-rates for oligonucleotide hybridization, we hypothesized that extending conformational restraint across multiple nucleotides could modulate hybridization kinetics by restricting rotational freedom of the sugar-phosphate backbone. As part of that effort, we recently reported that using hydrocarbon tethers to bridge adjacent phosphodiester linkages as phosphonate tethered bridges can pre-organize nucleic acids in conformations conducive for Watson-Crick base-pairing and modulate hybridization kinetics. In this report, we describe the synthesis of locked nucleic acid (LNA) trimers linked through alkylphosphonate tethers which restrict conformation of the furanose sugar in addition to restricting conformational mobility of the sugar-phosphate backbone across three nucleotide units.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View