Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Increased cell-free mitochondrial DNA is a marker of ongoing inflammation and better neurocognitive function in virologically suppressed HIV-infected individuals

Abstract

Cell-free mitochondrial DNA (mtDNA) is a highly immunogenic molecule that is associated with several inflammatory conditions and with neurocognitive impairment during untreated HIV infection. Here, we investigate how cell-free mtDNA in cerebrospinal fluid (CSF) is associated with inflammation, neuronal damage, and neurocognitive functioning in the context of long-term suppressive antiretroviral therapy (ART). We quantified the levels of cell-free mtDNA in the CSF from 41 HIV-infected individuals with completely suppressed HIV RNA levels in blood plasma (<50 copies/mL) by droplet digital PCR. We measured soluble CD14, soluble CD163, interferon γ-induced protein 10 (IP-10), monocyte chemoattractant protein-1 (MCP-1), interleukin 6 (IL-6), interleukin 8 (IL-8), tumor necrosis factor-α (TNF-α), neopterin, and neurofilament light chain (NFL) by immunoassays in CSF supernatant or blood plasma. Higher levels of mtDNA in CSF were associated with higher levels of MCP-1 (r = 0.56, p < 0.01) in CSF and TNF-α (r = 0.43, p < 0.01) and IL-8 (r = 0.44, p < 0.01) in blood plasma. Subjects with a previous diagnosis of AIDS showed significantly higher levels of mtDNA (p < 0.01) than subjects without AIDS. The associations between mtDNA and MCP-1 in CSF and TNF-α in blood remained significant after adjusting for previous diagnosis of AIDS (p < 0.01). Additionally, higher levels of mtDNA were associated with a lower CD4 nadir (r = -0.41, p < 0.01) and lower current CD4% (r = -0.34, p = 0.03). Paradoxically, higher levels of mtDNA in CSF were significantly associated with better neurocognitive performance (r = 0.43, p = 0.02) and with less neuronal damage (i.e. lower NFL). Higher cell-free mtDNA is associated with inflammation during treated HIV infection, but the impact on neurocognitive functioning and neuronal damage remains unclear and may differ in the setting of suppressive ART.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View