- Main
On Katz's $(A,B)$-exponential sums
Abstract
We deduce Katz's theorems for $(A,B)$-exponential sums over finite fields using $\ell$-adic cohomology and a theorem of Denef-Loeser, removing the hypothesis that $A+B$ is relatively prime to the characteristic $p$. In some degenerate cases, the Betti number estimate is improved using toric decomposition and Adolphson-Sperber's bound for the degree of $L$-functions. Applying the facial decomposition theorem in \cite{W1}, we prove that the universal family of $(A,B)$-polynomials is generically ordinary for its $L$-function when $p$ is in certain arithmetic progression.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-