Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

A minimally fine-tuned supersymmetric standard model

Abstract

We construct supersymmetric theories in which the correct scale for electroweak symmetry breaking is obtained without significant fine-tuning. We calculate the fine-tuning parameter for these theories to be at the 20% level, which is significantly better than in conventional supersymmetry breaking scenarios. Supersymmetry breaking occurs at a low scale of order 100 TeV, and is transmitted to the supersymmetric standard-model sector through standard-model gauge interactions. The Higgs sector contains two Higgs doublets and a singlet field, with a superpotential that takes the most general form allowed by gauge invariance. An explicit model is constructed in 5D warped space with supersymmetry broken on the infrared brane. We perform a detailed analysis of electroweak symmetry breaking for this model, and demonstrate that the fine-tuning is in fact reduced. A new candidate for dark matter is also proposed, which arises from the extended Higgs sector of the model. Finally, we discuss a purely 4D theory which may also significantly reduce fine-tuning. © 2005 Elsevier B.V. All rights reserved.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View